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Abstrpct. Time-dependent solutions of the Klein-Gordon equation for a massive scalar 
meson field in a Schwarzschild background space are obtained by the use of asymptotic 
methods. The solutions are found for all angular momentum states and are valid over all 
space exterior in a Schwarzschild radius provided the black hole is large, and the energy is 
very much less than the rest-mass energy of the scalar ?T meson. 

1. Introduction 

In a recent paper (Rowan and Stephenson 1976, to be referred to as I), the static 
solutions of the Klein-Gordon equation in a Schwarzschild background space were 
obtained by asymptotic methods. These methods are now applied to the solution of the 
time-dependent Klein-Gordon equation in the same space. The solutions, which 
involve Whittaker functions, are valid for the energy E<< m,,.c2, where m,, is the rest 
mass of the scalar T meson, and are required in the analysis of quantum field theory in a 
Schwarzschild space. Unlike previous work (see, for example, Boulware 1975) in which 
solutions have been obtained near and very far from the event horizon, the solutions 
given here are valid over all space exterior to the Schwarzschild radius provided this is 
large compared to the Compton wavelength of the meson. 

2. Basic equations 

We start with the source-free Klein-Gordon equation 

(U2 +p2)@ = 0, (2.1) 

where, as usual, p is the inverse Compton wavelength of the scalar meson associated 
with the field. In generally covariant form (2.1) is 

which, with a Schwarzschild background metric 

ds2=[1 -(2m/r)] dt2-[1-(2m/r)]-' dr2-r2 de2-r2sin28 d42, (2.3) 
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where m is the mass of the gravitating body, leads to the equation 

(2.4) 
Separating the variables by writing 

Q, = 1 #l,m (r, t )  V , m  (9,419 
I,m 

where Y,,,(d, 4 )  are the spherical harmonic functions, and then letting 

+l,m (r, 1 )  = j R1,m.E ( r )  d ~ ,  

we finally obtain the radial equation for Rl,m,E(r) in the form 

r3E2 + p 2 r 2 )  R = 0. d dR - ( 1  ( r  - 2m ) -) - ( / ( I  + 1 )  - - 
dr dr r - 2 m  

Using the substitution x = ( r  - 2m) /m (as in I), (2.7) becomes 

(2.8) dx X 

where P =  Em and N = p m .  
Writing (2.8) in normal form by putting 

R ( x )  = [ x ( x  + 2)]-1’2Z(x),  
we have 

]z=o. (2.10) 
d 2 Z  

It is this equation which we now wish to solve. There are two ways (at least) of 
approaching this problem, one of which depends on the reduction to a simpler equation 
using the asymptotic method due to Liouville and Green as discussed in I. The other 
method is based on a technique involving an examination of the transition points of 
(2.10) (see Olver 1974). This method will not be discussed in the present paper. 

3. Solution by the LiouvilleGreen method 

In equation (2.10) we first change the inde endent variable from x to 6 by the 
transformation x = x ( 0 ,  and then let G = (5 ) 2 (where primes denote differentiation 
with respect to x )  to obtain 

I 1 8  

Writing a 2 = 1 ( 1 + l ) / k 2 ,  p2=  N 2 / k 2 ,  where k 2 = N 2 + 1 ( 1 + 1 )  and choosing 
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(3.1) becomes 

(3.3) 
-=[k2-P d2G 2 (T)~-$- 2+x 1 
d5  

The behaviour of the terms 
1 f” 3 5112 

+r3--r4 - 
x2(x+2)25’2 25 4 5 (3.4) 

has been fully discussed in I, where it is shown that (3.4) may be written as -1/4e2+ 
g1(&), where gl(5) is a slowly varying function and is bounded by at most 5 .  The 
remaining term on the right-hand side of (3.3) besides k 2  is 

-P2(T)2-$= 2+x -P 2 (,) 2+x x(x+2) 
BZ(x +2)2+a2* 

For small x ,  we have from (3.2) 

5-J27;(4p2+a2)”2 

(3.5) 

(3.6) 

so that the term (3.5) behaves like -16P2/t2. Equation (3.3) may now be written as 

where 

By numerical calculation, it is found that (gz(S)I 

This requirement leads to the condition 

16P2/B2 and that g2(5) is a slow1 
varying function. Since we want to neglect g&), it must be small compared with k Y . 

P<<N or E < < p ,  (3.10) 

which in conventional units is E << m,,.c2, where m, is the rest mass of the scalar 7r 
meson. Neglecting both g1(5) and g&) in (3.7) we have finally 

Writing U = 2k5, (3.11) becomes 

(3.11) 

(3.12) 
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which is to be compared with the Whittaker equation 
2 1  

(3.13) 

(3.14) 

where A and B are arbitrary constants, and (provided 2m is not a negative integer) 

The solution of (3.12) is therefore 

A convenient representation for 
and Watson 1927) 

when K = 0 is the Kummer series (see Whittaker 

1- U 2p 
MO,,(U) = um+t (1 + 2 

p = i  24pp!(m + 1 ) .  . . (m + p )  
(3.17) 

Furthermore it is known that the 
functions and that 

functions may be expressed in terms of Bessel 

(3.18) 2im 1/2 Mo,im(u)=r(1+im)2 U Iim(u/2), 

where Iim is the modified Bessel function of the first kind of order im, and r is the 
gamma function. The appearance of Bessel functions of imaginary order in similar 
work on quantum field theory in curved space has been noted by other authors (see, for 
example, Boulware 1975). 

The final solutions for the radial function R(x) are therefore 

where, from (3.2), 

2 1/2 (= 1: [@2(T)+L] 2 + x  dx. 
x ( x  + 2) 

(3.19) 

(3.20) 

Again we emphasize that this solution has been obtained on the assumption that E << CL 
(see (3.10)) and N is a large parameter as in I; however, it is valid for all 1 values. 

The calculation of the error due to neglecting the g( ( )  in (3.7) for all 6 in 0 s 6 < a0 is 
difficult, and it is probably better to examine each case separately rather than to try to 
obtain a general error formula. It seems very unlikely that the error here, or in I, could 
be large since kl(S)I+Ig2CS>l<< k. 
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